
Ext Speeder
User’s Guide

Ext Speeder version 1.0.6

Speedment, Inc.
Palo Alto, California, United States
Copyright © 2016, All RIghts Reserved

1

Table of Contents
1 Introduction

1.1 Scope and Purpose
1.2 Prerequisites
1.3 Quick Start
1.4 Getting the Software
1.5 Creating a New Project

1.5.1 NetBeans IDE
1.5.1.1 Creating a new Ext Speeder Project in Netbeans
1.5.1.3 Starting the Ext Speeder Tool from Netbeans

1.5.2 Eclipse IDE
1.5.2.1 Creating a new Ext Speeder Project in Eclipse
1.5.2.2 Starting the Ext Speeder Tool from Eclipse

1.5.3 IntelliJ IDEA
1.5.3.1 Creating a new Ext Speeder Project in IntelliJ IDEA
1.5.3.2 Starting the Ext Speeder Tool from IntelliJ IDEA

1.6 Connect to the Database
1.7 Configure the Sencha Ext JS Client Project

2 Using the Graphical Tool
2.1 Configuring the Project

2.1.1 Common Node Properties
2.1.1.1 Project
2.1.1.2 Dbms
2.1.1.3 Schema
2.1.1.4 Table
2.1.1.5 Column
2.1.1.6 Index
2.1.1.7 IndexColumn
2.1.1.8 ForeignKey
2.1.1.9 ForeignKeyColumn
2.1.1.10 PrimaryKeyColumn

2.1.2 Controlling the REST API
2.1.2.1 Hide Table or Column in REST
2.1.2.2 Change Name of Table or Column
2.1.2.3 Change Value Type of Column
2.1.2.4 Define Virtual Columns

3 The Java API
3.1 Navigating the Generated Code

3.1.1 Entities and Managers
3.2 Common Stream Operations
3.3 Formatting JSON Output

3.3.1 Modifying the JSON Output
4 Deploying a Server Application

4.1 Deploying Stand Alone

2

4.2 Deploying in A JavaEE Server
4.3 Setting JVM parameters

5 Requirements and Performance
5.1 Database types
5.2 JVM types
5.3 JavaEE Servers
5.4 Data Sizes
5.5 Primary Key Requirement
5.6 Static data
5.7 Performance
5.8 Benchmarks
5.9 Query Planning

Appendix A

3

1 Introduction
With the ​Ext Speeder​ add-on for Sencha Ext JS, it is possible to automatically generate an
API bridge application between a Sencha Ext JS Grid application and a relational
database.

1.1 Scope and Purpose
This User’s Guide will take you through the process of setting up Ext Speeder
environment and configuring it for maximum performance. It will also give an
introduction to the Ext Speeder graphical tool and to the generated REST API.

Ext Speeder runs on the server-side of the application architecture and responds to Ext JS
DataGrid requests over a REST API. The examples are aimed towards Sencha Ext JS
developers that works with database communication. The back-end code is written in
Java, but in most use cases, the amount of code that needs to be written manually is
minimal. Ext Speeder will take care of all the boilerplate code.

1.2 Prerequisites
The following software needs to be installed on a development computer:

● Java Development Kit (JDK) 1.8.0_40 or newer (Oracle or OpenJDK)
● One of the following IDEs (with Maven support):

○ Netbeans IDE 8.1
○ Eclipse IDE Mars.1
○ IntelliJ IDEA 16.1

● Maven 3.3.0 or later
● Sencha Ext JS 6.0.0 or later

An internet connection is also required the first time an Ext Speeder license is setup.

4

1.3 Quick Start

In Chapter 1.4 to 1.7 you will get a detailed description of how to install and use Ext
Speeder. Here is an overview of the work­items that needs to be completed:

1. Modify the ​~/.m2/settings.xml​ file so that the Ext Speeder repositories will be
recognized.

2. Launch your IDE (Netbeans, Eclipse or IntelliJ IDEA).
3. Create a new project.
4. Modify the new project’s POM file to allow it to use Ext Speeder.
5. Launch the Ext Speeder tool and follow the instructions given: select database and

click ​Connect​.
6. Click the ​Generate​ button. Code will be generated automatically.
7. Right­click the ​Generated{$ProjectName}Application​ file and select “​Run File​”.

Step 1 needs to be completed only once. Step 2 through 7 are repeated for each new
project that is being created. The steps are different depending on the IDE type used.

1.4 Getting the Software
The first step in getting access to the Ext Speeder tool is to register for a license. Go to
www.extspeeder.com​ and click on ​Buy Now​ or ​Try For Free ​to get to the online store.
Once the form is completed, a product key, a username and a password will be
delivered to the specified e-mail address.

5

http://www.extspeeder.com/

The first time Ext Speeder is launched from within the IDE, the product key needs to be
entered in order to start the tool.

Ext Speeder runs inside any of the IDEs: NetBeans, Eclipse or IntelliJ IDEA. These tools
will automatically download the Ext Speedment tool using the included Maven builder.
However, Maven first has to be configured to find the Ext Speeder repositories. To do
this, a file called “settings.xml” needs to be updated.

Navigate to your home directory and look for a folder named “.m2/”. The folder might be
hidden by default, so make sure to show hidden files and folders. Inside “.m2/”, open the
file “settings.xml” in a text editor.

Tip:​ If Maven has not been used before, there is a probably not a “.m2” directory and/or
a “settings.xml”-file. In that case, create the missing directory manually and then use a
text-editor to create a new empty “settings.xml” file.

Update the “settings.xml”-file so it will look like the file below, but replace “​USERNAME​”
and “​PASSWORD​” with the information sent to you in the welcome e-mail.

<settings>

 ​<servers>

 ​<server>
 ​<id>​speedment­enterprise​</id>

6

 ​<username>​USERNAME​</username>
 ​<password>​PASSWORD​</password>
 ​</server>
 ​<server>
 ​<id>​speedment­enterprise­snapshots​</id>
 ​<username>​USERNAME​</username>
 ​<password>​PASSWORD​</password>
 ​</server>

 ​</servers>

 ​<profiles>
 ​<profile>
 ​<activation>
 ​<activeByDefault>​true​</activeByDefault>
 ​</activation>

 ​<repositories>
 ​<repository>
 ​<id>​speedment­enterprise­snapshots​</id>
 ​<name>​Speedment Enterprise Snapshot Repositories​</name>
 ​<url>​http://repo.speedment.com/nexus/content/repositories/snapshots/​</url>
 ​</repository>
 ​<repository>
 ​<id>​speedment­enterprise​</id>
 ​<name>​Speedment Enterprise Repositories​</name>
 ​<url>​http://repo.speedment.com/nexus/content/repositories/releases/​</url>
 ​</repository>
 ​</repositories>
 ​<pluginRepositories>
 ​<pluginRepository>
 ​<id>​speedment­enterprise­snapshots​</id>
 ​<name>​Speedment Enterprise Snapshot Repositories​</name>
 ​<url>​http://repo.speedment.com/nexus/content/repositories/snapshots/​</url>
 ​</pluginRepository>
 ​<pluginRepository>
 ​<id>​speedment­enterprise​</id>
 ​<name>​Speedment Enterprise Repositories​</name>
 ​<url>​http://repo.speedment.com/nexus/content/repositories/releases/​</url>
 ​</pluginRepository>
 ​</pluginRepositories>
 ​</profile>
 ​</profiles>
</settings>

This will tell Maven where the Ext Speeder repositories are located and which credentials
are to be used when connecting to the Ext Speeder repositories.

7

1.5 Creating a New Project

Below are detailed instructions for how to set up a project in each of the supported
IDE:s. Skip to the relevant chapter depending on the IDE prefered.

1.5.1 NetBeans IDE
So far the Ext Speeder repositories have been installed together with the credentials in
the “settings.xml”-file. It is now time to create a new project.

1.5.1.1 Creating a new Ext Speeder Project in Netbeans

At this point the first Ext Speeder project can be created.

1. The first step of creating a new Ext Speeder project in Netbeans is to press the
New Project...​ button in the toolbar.

2. This will open a guide for creating a new project. Ext Speeder is made for the
Maven build tool, so go to the ​Maven​ category and select ​Java Application​. Press
Next​.

8

3. Select a ​Project Name​ and perhaps set other properties for the new server

application. Any values can be used. Press ​Finish​.

4. The new project is created. Right click on the new project and select ​Open POM​.

5. Update the new project’s POM file so that it contains the Ext Speeder
dependencies. You can find these at ​www.extspeeder.com/userguide​.

9

http://www.extspeeder.com/userguide

1.5.1.3 Starting the Ext Speeder Tool from Netbeans

Ext Speeder is designed to run as a Maven Goal inside the IDE. To launch it, follow the
steps below:

1. Select the new project in the ​Projects​ tree. Right-click on the project and select
Clean and Build… ​Netbeans will now download all the Ext Speeder components.

2. Look in the ​Navigator​ panel. Two goals named “extspeeder generate” and

“extspeeder tool” will appear.

Tip:​ If the Navigator component is not visible, it can opened from the menu bar
by pressing ​Window​ → ​Navigator​ or by pressing ​Ctrl+7​ on the keyboard. If it is
showing but does not contain anything, it means that the project root node is not
selected in the ​Projects ​component.

3. Double click on ​extspeeder tool​ to launch the graphical tool.

Tip:​ It is possible to regenerate the project without launching the graphical tool by
running the ​extspeeder:generate​ goal. It will rerun the most recent
configuration.

Go to Chapter 1.6 for instructions on how to use the graphical tool.

10

1.5.2 Eclipse IDE
So far, the Ext Speeder repositories and credentials has been installed in the
“settings.xml”-file. It is now time to create a new project.

1.5.2.1 Creating a new Ext Speeder Project in Eclipse

1. Open up a new Eclipse Workspace where the Ext Speeder project is to be located.

2. Go to the ​Create Project​ button in the toolbar, press the small arrow-down icon
next to it and select ​Other..​.

3. Select the ​Maven Project​ Wizard. Click ​Next​.

11

4. Make sure that the checkbox “Create a simple project…” is checked. Click ​Next​.

5. Fill in the data for your project . Any values can be used. Click ​Finish​.

6. The project is created. Expand the project and double click on the file “pom.xml”.
Select the tab “pom.xml” in the lower portion of the editor. ​Update the new
project’s POM file so that it contains the Ext Speeder dependencies. You can find
these at ​www.extspeeder.com/userguide​.

12

http://www.extspeeder.com/userguide

1.5.2.2 Starting the Ext Speeder Tool from Eclipse

Ext Speeder is designed to run as a Maven Goal inside the IDE, but Eclipse does not have
a list of executable goals like other IDEs have. Instead, an action for running the tool
must be created manually.

1. The first time the Ext Speeder Tool is used, press the small arrow to the right of
the ​Run​ icon in the Eclipse toolbar and select ​Run As​ → ​3 Maven Build​ or press
Alt+Shift+X, M​ on the keyboard.

2. Enter a ​Name:​ for the goal that can be recognized to be the Ext Speeder Tool, like

"ext-speeder-tool".

3. Enter a ​Base directory:​ for the goal to run in. The easiest way of doing this is to
press the ​Browse Workspace...​ button and select the root node there.

4. Enter "extspeeder:tool" as the ​Goals:​ to run.

5. Click ​Apply​ to save the action.To run the tool immedietly, press ​Run​.

6. To run the “extspeeder:tool”-goal again, simply press the arrow-down icon beside

the ​Run​ button in the toolbar and select the new action. This will relaunch the Ext
Speeder tool.

Go to Chapter 1.6 for instructions on how to use the graphical tool.

1.5.3 IntelliJ IDEA
So far the Ext Speeder repositories and credentials has been installed in the
“settings.xml”-file. It is now time to create a new project.

1.5.3.1 Creating a new Ext Speeder Project in IntelliJ IDEA

1. Go to ​File ​→ ​New​ → ​Project...

2. Make sure you are under the ​Maven​ tab, make sure that the ​Project SDK​ is 1.8
and that the ​Create from archetype​ checkbox is ​unchecked​. Click the ​Next
button.

13

3. Enter the ​Goupid​, ​ArtifactId​ and ​Version​ of the new project. Any values can be

used.

When you have entered the properties, click ​Next​.

4. Enter the ​Project name​ and the ​Project location​. Any values can be used. Click
Finish​.

14

5. You will now return to the workspace of IntelliJ IDEA. Expand the newly created

project by clicking the arrow on the left side of the project name.

6. Double-click the file named “​pom.xml​”. ​Update the new project’s POM file so that

it contains the Ext Speeder dependencies. You can find these at
www.extspeeder.com/userguide​.

7. In the top-right corner of the window you might notice a message with the text

“Maven projects need to be imported”. Click on ​Import Changes​ it to import the
Ext Speeder dependencies. You project is now ready for Ext Speeder!

15

http://www.extspeeder.com/userguide

1.5.3.2 Starting the Ext Speeder Tool from IntelliJ IDEA
Ext Speeder is designed to run as a Maven Goal inside the IDE. To launch it, follow the
steps below:

1. In the far right of the IntelliJ window you should see a tab labeled ​Maven
Projects​. Maximize it to see the tree of Maven Goals. If the tab is not visible, turn
it on by selecting the menu ​View->Tool Windws->Maven Projects.

2. Navigate to ​<project-name>​ → ​Plugins​ → ​extspeeder​.

3. Double-click the ​extspeeder:tool​ goal.

16

1.6 Connect to the Database

1. When the Ext Speeder graphical tool is launched for the first time, it will ask for
the product key. This is the code that was sent via e-mail when the license was
registered with the Ext Speeder website.

Note:​ Replace the license key illustrated above with the real one received in the
e-mail.

2. Enter e-mail address, firstname and lastname in order for the license to be issued
for this computer. This information will be sent to the Ext Speeder servers so that
a personal license token can be generated for you (make sure that the
development computer is connected to the internet at this time). The token will
then be stored on your computer so that you can access the features of Ext
Speeder, even without an internet connection in the future.

17

Tip:​ The same license can be used on multiple computers by entering the same
information again. If additional licenses are needed or if a license needs to be
transferred to another developer, please contact the Ext Speeder Sales team.

3. The next step is to connect to the database. In the drop-down list at the top, all
the currently installed database connectors will be seen. Select the one that is
relevant for the project and then continue by entering the credentials for that
database in the remaining fields. Add the name of the database schema that
should be used in the field at the very bottom of the popup window.

Note:​ Ext Speeder never saves a database password for security reasons.

4. After entering the information elements, the Ext Speeder graphical tool will open

and the schema will load. Press the ​Generate ​button in the toolbar to generate
code.

18

5. In the IDE, a number of .java-files and packages that have been generated can be
seen. Ext Speeder has created an object-oriented model of the database. In the
base package there is now a file named after the project. It includes all the code
necessary to start a server that will connect to the database and serve any
requests to it via a REST API.

6. Build and run the java project to launch the server application by right-clicking the
Generated{$ProjectName}Application file and select “Run”.

19

Note:​ When the application starts, enter a username and a password to connect
to the database. If the database is not password protected, simply leave the
password field blank.

­­
Building salesinfo 1.0.0­SNAPSHOT
­­

­­­ exec­maven­plugin:1.2.1:exec (default­cli) @ salesinfo ­­­
Warning! You are running from an integrated console.
Entered passwords will be visible in input.
Connecting to database
2016­05­02T22:57:24.598Z INFO [main] (c.s.e.c.u.Announcer) ­ Enterprise Component
OffHeapReadOnlyCacheComponentImpl created.
Connect to PostgreSQL on 130.211.120.81:5432
Username (leave blank to use "postgres"):
Password (leave blank to skip password): C4o4F428
Starting server at /salesinfo ...
2016­05­02T22:58:08.164Z INFO [main] (c.s.i.c.r.SpeedmentApplicationLifecycle) ­ PostgreSQL, 9.4.5,
PostgreSQL Native Driver PostgreSQL 9.4 JDBC4 (build 1205), JDBC version 4.0
2016­05­02T22:58:08.344Z INFO [ForkJoinPool.commonPool­worker­5]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed special, 0 entities in 106.84 ms
2016­05­02T22:58:08.410Z INFO [ForkJoinPool.commonPool­worker­5]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed product, 16 entities in 59.45 ms
2016­05­02T22:58:08.410Z INFO [ForkJoinPool.commonPool­worker­5] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for special
2016­05­02T22:58:08.412Z INFO [ForkJoinPool.commonPool­worker­5] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for product
2016­05­02T22:58:08.554Z INFO [ForkJoinPool.commonPool­worker­1]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed salesperson, 20 entities in 318.42
ms
2016­05­02T22:58:08.554Z INFO [ForkJoinPool.commonPool­worker­1] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for salesperson
2016­05­02T22:58:08.556Z INFO [ForkJoinPool.commonPool­worker­6]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed region, 8 entities in 307.55 ms
2016­05­02T22:58:08.556Z INFO [ForkJoinPool.commonPool­worker­6] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for region
2016­05­02T22:58:08.560Z INFO [ForkJoinPool.commonPool­worker­4]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed customer, 142 entities in 316.86 ms
2016­05­02T22:58:08.560Z INFO [ForkJoinPool.commonPool­worker­4] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for customer
2016­05­02T22:58:08.561Z INFO [ForkJoinPool.commonPool­worker­2]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed sale, 42 entities in 303.29 ms
2016­05­02T22:58:08.561Z INFO [ForkJoinPool.commonPool­worker­6] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for sale
2016­05­02T22:58:08.566Z INFO [ForkJoinPool.commonPool­worker­3]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed office, 61 entities in 309.98 ms
2016­05­02T22:58:08.567Z INFO [ForkJoinPool.commonPool­worker­3] (c.s.e.o.i.c.EntityCache) ­ Building

20

Column Caches for office
2016­05­02T22:58:08.587Z INFO [ForkJoinPool.commonPool­worker­7]
(c.s.e.o.i.c.i.OffHeapReadOnlyCacheComponentImpl) ­ Loading completed country, 246 entities in 326.85 ms
2016­05­02T22:58:08.587Z INFO [ForkJoinPool.commonPool­worker­7] (c.s.e.o.i.c.EntityCache) ­ Building
Column Caches for country
2016­05­02T22:58:08.627Z INFO [main] (c.s.i.c.r.SpeedmentApplicationLifecycle) ­ Java Platform API
Specification 1.8 by Oracle Corporation. Implementation Oracle Corporation 1.8.0_92 by Oracle Corporation
2016­05­02T22:58:08.627Z INFO [main] (c.s.i.c.r.SpeedmentApplicationLifecycle) ­ Speedment (Open Source)
version 2.3.2 by Speedment Inc. started. API version is 2.3
Waiting for connections on port 4567...
Press Enter to close application.[Thread­4] INFO org.eclipse.jetty.util.log ­ Logging initialized
@44938ms
[Thread­4] INFO spark.webserver.JettySparkServer ­ == Spark has ignited ...
[Thread­4] INFO spark.webserver.JettySparkServer ­ >> Listening on 0.0.0.0:4567
[Thread­4] INFO org.eclipse.jetty.server.Server ­ jetty­9.3.2.v20150730
[Thread­4] INFO org.eclipse.jetty.server.ServerConnector ­ Started
ServerConnector@73faeaac{HTTP/1.1,[http/1.1]}{0.0.0.0:4567}
[Thread­4] INFO org.eclipse.jetty.server.Server ­ Started @45008ms

7. To test the API, launch any web browser and enter the address
http://localhost:4567/<project­name>/​ and a list of available command(s)
will be shown.

8. These commands can be appended to the URL to request more specific

information from the API.

For example, entering...

http://localhost:4567/<project­name>/<database­name>/

<schema­name>/<table­name>?limit=10&start=0&callback=cb

...will retrieve the first ten rows of data from the given table.

21

1.7 Configure the Sencha Ext JS Client Project
Ext Speeder is now installed on the development computer and the server project has
been created. The default settings in the graphical tool will simply expose every table in
the selected schema as separate REST URI path.

Open the Sencha Ext JS client application folder and navigate to the store that the Data
Grid is using. A typical model and store pair could look like this:

Ext​.​define​(​'MyApp.model.User'​,​ {
 extend​:​ ​'Ext.data.Model',
 fields​:​ ​[​'name'​,​ ​'email'​,​ ​'phone']
});

Ext​.​define​(​'MyApp.stores.Users'​,​ {
 extend​:​ ​'Ext.data.Store',
 model​:​ ​'MyApp.model.User',
 data​:​ [
 ​{​id​:​ ​1​,​ name​:​ ​'Ann'​,​ email​:​ ​'ann@company.com'​},
 ​{​id​:​ ​2​,​ name​:​ ​'Bill'​,​ email​:​ ​'bill@company.com'​},
 ​{​id​:​ ​3​,​ name​:​ ​'Cecil'​,​ email​:​ ​'cecil@company.com'​},
 ​{​id​:​ ​4​,​ name​:​ ​'Dave'​,​ email​:​ ​'dave@company.com'}
]

});

The store must now be modified so that it will, instead of using static data, connect to the
server application using the generated REST API.

Ext​.​define​(​'MyApp.store.Users'​,​ {
 extend​:​ ​'Ext.data.BufferedStore'​,​ ​// Buffer requests in client
 model ​:​ ​'MyApp.model.User',
 proxy ​:​ {
 ​// load using HTTP

22

 type ​:​ ​'jsonp',
 url ​:​ ​'http://localhost:4567/myapp/db0/myapp/user',
 callbackKey ​:​ ​'callback',
 reader​:​ {
 rootProperty​:​ ​'data'​,​ ​// Default in Ext Speeder
 idProperty​:​ ​'id'​,​ ​// Primary Key Column of table User
 totalProperty​:​ ​'total'​ ​// Default in Ext Speeder
 }

 ​},
 autoLoad ​:​ ​true,
 pageSize ​:​ ​50,
 sorters ​:​ ​[{
 property ​:​ ​'id',
 direction ​:​ ​'ASC'
 ​}]
});

Note that the default URL will depend on the names used for the project, database,
schema and table. Also, make sure that the ‘idProperty’ value (‘id’ in the example above)
corresponds to the name of the primary key column for the specific table.

Tip:​ It is possible to set a custom path for a particular resource using the Ext Speeder
graphical tool.

23

2 Using the Graphical Tool
In the previous chapter a quick look at the graphical tool when creating the project was
shown. When the code was generated, Ext Speeder used the default settings for
configuring the entire API. This is great to get an API up and running with minimal effort,
but sometimes it is necessary to do small adjustments of, for an example, the naming of
the commands. This is what we are going to do now.

Using the Java IDE, run the ​extspeeder:tool​ goal again to open up the main window.

Note:​ The first time code is generated using Ext Speeder, the configuration will be stored
in a .json-file (named “speedment.json”) in the project directory. When the tool is
subsequently launched, it will not connect to the database, but instead read the
configuration from that .json-file. To regenerate the project from the database, use the
Reload​-button in the ​Toolbar​ or remove the “speedment.json” file altogether and
re-start the tool.

The main window is separated into four different areas. There is the ​Toolbar​, the ​Project
Tree​, the ​Workspace​ and the ​Output​ area.

1. The ​Toolbar​ is located in the upper part of the window. Here it is possible to
access all the built-in functions. It is also possible to manage the project, generate
code, toggle visibility of different areas and get information about the tool. The

24

most common tasks can be done using the larger quick-access buttons.

2. The ​Project Tree​ illustrates a hierarchical representation of the database. By

selecting different nodes in the tree, the context of the workspace can be
changed. It is also possible to right-click on the nodes to show specific options for
that node.

3. The ​Workspace​ is where most of the configuration is done. The context is based
on which node is selected in the Project Tree. Different nodes can have different
configuration options. More about that in section 4.1.

4. The ​Output​ area is where information collected by the generator is displayed.

2.1 Configuring the Project
When the database is analyzed, Ext Speeder will set every option to a default value. This
works in most cases, but sometimes a few things have to be changed to match the client
API or to hide some piece of information from being exposed. Since every node can
contain different configuration options, they are listed below based on which node they
belong to.

Tip:​ If the mouse pointer is hovered over a configuration option in the Workspace, a
small description of that setting will appear.

25

Tip:​ There are typically two names for every node used by Ext Speeder; a ​database name
and a ​java alias​. For most purposes, only the ​java alias​ should be changed and not the
database name. The only time a new name of the database is needed is when adapting
to structural changes in the database (e.g. a column has been renamed).

2.1.1 Common Node Properties
Most of the node types have a handful of common fields that has the same meaning for
all of the node types. These includes:

Property Meaning

Enabled Controls if this node shall be handled by the Ext Speeder or
not. Disabled nodes will neither be seen in the REST interface
nor occupy memory resources in the application. Make sure
to disable nodes that are not used by the application. This
function is also useful when ‘hiding’ columns (e.g. password
or credit card numbers) from exposure.

Database Name Represents the name that this node has in the database. For
example the name of a database table or a column. Do not
change the Database Name unless the name in the database
itself has changed.

Java Alias If the Java Alias checkbox ‘auto’ is selected, then the Java Alias
will be the same as the Database Name. If the ‘auto’ box is
unchecked, then a custom name can be set. The application
will use the custom name in the Java code and in the REST
API. This is useful if the database structure cannot be
changed.

2.1.1.1 Project

The Project Node is the root of the project in the graphical tool. It contains general
properties of the project. Properties set here relates, for example, to the Java code
generator so it knows where to store the .java-files and which package names to use.

Property Meaning

Company Name Holds the name of your company or organization. The
Company name is used to automatically derive the
Package Name.

Package Name If the checkbox ‘auto’ is enabled, the Package Name will be
automatically derived as ‘com.{Company Name}’. If the the
‘auto’ box is unchecked, any value can be entered. The

26

Package Name is used when organizing the Java files in a
name space. The Package Name can, for example, be set
to “org.somecharity” or “edu.someuniversity”.

Package Location If the checkbox ‘auto’ is enabled, the Package Location will
be automatically derived as ‘src/main/java’ which is
Maven’s recommended location for Java files. If the ‘auto’
box in unchecked, any value can be entered (only for
advanced users).

Cache Storage Type This drop-down list controls how Ext Speeder accesses
data. Selecting the right type is essential for application
performance.

● NO_CACHE Data will be pulled directly from the database with no
cache in between the database and the application. Data
will always be current, but no speed increase is gained.

● STATIC_ON_HEAP Data is pulled from an in-memory on heap store. This is
the fastest solution, but the amount of data is limited to
about 12 GB for consistent operation. Data is refreshed
periodically according to the Refresh Rate property.

● STATIC_OFF_HEAP Data is pulled from an in-memory off heap store. This is
the second fastest solution and the amount of data is
limited only by the available RAM of the server. Data is
refreshed periodically according to the Refresh Rate
property.

Refresh Rate (seconds) If the checkbox ‘auto’ is enabled, the Refresh Rate will be
automatically set to 3,600 seconds (i.e. one hour) which is
the default value. If the ‘auto’ box in unchecked, any value
can be entered. The value is the number of seconds
between a complete cache reload from the database. A
lower value makes data more current but requires data to
be loaded more often from the database. A higher value
makes data less current but requires data to be loaded
less often from the database. This value is not used for the
Cache Storage Type NO_CACHE.

Use Secure Mode If this checkbox is enabled, the web server will use secure
connections (i.e. “https:”) rather than insecure connections
(i.e. “http:”). If Secure Mode is selected, a Key Store
Location and a Trust Store Location must be provided (see
below).

Key Store Location This property is only used if “Use Secure Mode” is
enabled. This property holds the file path to a key store
directory. The key store is a repository of secure
certificates used for SSL encryption which, in turn, is a part
of “https:”. The key store contains the application’s own
certificate and private key.

27

Trust Store Location This property is only used if “Use Secure Mode” is enabled.
This property holds the file path to a trust store directory.
The trust store contains a collection of certificate authority
(CA) certificates trusted by the Ext Speeder application.

2.1.1.2 Dbms

The database instance that Ext Speeder is connected to will be represented as a Dbms
node in the Project Tree. In these settings, many of the fields entered when first
connecting to the database will be stored.

Property Meaning

Dbms Type Shows the selected database type (e.g. Oracle, MySQL,
PostgreSQL or MariaDB). The number of available types,
depends on which database drivers that are available to the
tool at runtime. Usually, there is only one type available
unless other types were added in the project’s POM file.

IP Address If the checkbox ‘auto’ is enabled, the IP Address will be
automatically derived as ‘127.0.0.1’ which is the localhost
itself. If the ‘auto’ box is unchecked, any value like a custom
ip address or an internet host name can be entered.

Port If the checkbox ‘auto’ is enabled, the Port will be
automatically derived as the default port for the selected
Dbms Type (e.g. ‘3306’ for MySQL or ‘1521’ for Oracle). If the
‘auto’ box is unchecked, any value can be entered.

Username If the checkbox ‘auto’ is enabled, the Username will be
automatically derived as the default user for the selected
Dbms Type (e.g. ‘root’ for MySQL). If the ‘auto’ box is
unchecked, any integer value can be entered. If the
Username is empty, no user name will be given to the
database upon login.

Connection URL If the checkbox ‘auto’ is enabled, the Connection URL will be
automatically derived depending on the selected Dbms Type,
IP Address and Port. If the ‘auto’ box is unchecked, any value
can be added.

Note:​ For security reasons, Ext Speeder never saves a database password in any
configuration files!

28

Tip:​ If a switch from a development database to one in production must be done, simply
change the values for the ​IP Address​ and optionally the ​Port​. These values can also
easily be set programmatically in the Java code if needed.

2.1.1.3 Schema

For every schema that Ext Speeder is connected to there will be a Schema node in the
Project Tree.

Property Meaning

Exposed in REST If this checkbox is enabled, all the underlying nodes like
tables and columns can be exposed in the REST interface. If
this box is unchecked, ​all the underlying nodes will be hidden
from the REST interface, regardless of the underlying nodes
REST exposure settings.

2.1.1.4 Table

For every table in the database, Ext Speeder can create a REST command that can be
used to get a list of every row of that table. The default path of a table will consist of the
Java Names of every node above the table in the tree.

Property Meaning

Exposed in REST If this checkbox is enabled, all the underlying nodes like
columns can be exposed in the REST interface. If this box is
unchecked, ​all the underlying nodes will be hidden​ from the
REST interface, regardless of the underlying nodes REST
exposure settings.

REST path If the checkbox ‘auto’ is enabled, the REST path will be
automatically derived as the Java Names of every node above
the table in the tree (i.e. {Project Java Alias}.{Dbms Java
Alias}.{Schema Java Alias}.{Table Java Alias}. If the ‘auto’ box
is unchecked, any value can be entered.

Tip:​ If a custom REST path needs to be used, for an example to get something shorter,
the ​REST Path ​property can be used.

29

2.1.1.5 Column

The columns from the database will make up the fields in JSON responses sent by the
generated server application. Most of the settings in the Column node simply exist to
reflect how the column works in the database (auto increment for an example), but some
of them will affect the generated API.

Property Meaning

Is Nullable Indicates whether or not a value in this column can be set to
null in the database. This should reflect how the database is
configured.

JDBC Type to Java Can be changed to control how the database data type for
this column will be represented in the object oriented Java
world. The selectable alternatives depends on which type the
column has in the database.

REST path If the checkbox ‘auto’ is enabled, the REST path will be
automatically derived as the Java Names of every node above
the table in the tree (i.e. {Project Java Alias}.{Dbms Java
Alias}.{Schema Java Alias}.{Table Java Alias}. If the ‘auto’ box
is unchecked, any value can be entered.

Is Auto Incrementing Indicates whether or not a value in this column is generated
automatically for new rows. This should reflect how the
database is configured.

Exposed in REST If this checkbox is enabled, the column can be exposed in the
REST interface. If this box is unchecked, ​the column will be
hidden​ from the REST interface.

Tip:​ If a column contains date, time or timestamp fields, setting the ​JDBC Type to Java
property to something resulting in a ​Long​ or even ​Integer​ will save a lot of memory
space.

2.1.1.6 Index

Indexes from the database will be examined when creating a column-oriented
in-memory view of the data. This is a central part of the acceleration engine. If a single
column index is set to ​Unique​, Ext Speeder will assume that only one row in that column
can have a certain value, which makes it possible to do optimizations based on that.
Unique columns are much faster than non-unique ones.

30

2.1.1.7 IndexColumn

This node marks which column(s) that are indexed.

Note:​ If the name of a column in the database is changed, remember to also change the
name of any IndexColumns referencing it in the graphical tool.

2.1.1.8 ForeignKey

Represents a foreign key in the database. These are used by Ext Speeder to organize
related entities in the memory in a manner similar to graph databases.

2.1.1.9 ForeignKeyColumn

This node marks which column(s) that form the beginning of an edge.

Note:​ If a name of a column in the database is changed, remember to also change the
name of any ForeignKeyColumns referencing it in the graphical tool.

2.1.1.10 PrimaryKeyColumn

This node marks which column(s) that are part of the primary key. The primary key is
used as the unique identifier for an entity in its manager. Ext Speeder requires each table
to have exactly one primary key column.

Note:​ If the name of a column in the database is changed, remember to also change the
name of any PrimaryKeyColumns referencing it in the graphical tool.

2.1.2 Controlling the REST API
One of the most important things in the graphical tool is to configure how the REST API
will be exposed. REST commands are created for every enabled table in the Project Tree.
In this section the most common tasks, like hiding tables and renaming fields, using the
graphical tool is explained.

2.1.2.1 Hide Table or Column in REST

When the graphical tool analyzes the database, it can not predict what information shall
be exposed in the application. Therefore it is programmed to show every table and
column possible. This is convenient when debugging a client application since the client
has access to everything, but it is not recommended to have this setup in a production
environment since it will allow anyone with access the API to read everything in the
database!

31

To prevent a table or a column from being exposed in the REST API, select the node in
the ​Project Tree​ and deselect the checkbox ​Exposed in REST​.

Note:​ Disabling a node by unchecking ​Enabled​ means that it will not exist in the server
application at all. Disabling ​Exposed in REST​ only hides it in REST queries, it can still be
used from the Java code.

2.1.2.2 Change Name of Table or Column

When creating a backend for an existing client application, it is important to ensure that
the names for something used in the API is the same as the table or column names used
in the database. To change the name of a node in the REST API, uncheck ​Auto​ on the
REST Path​ setting and write a custom path for that resource.

Tip:​ If the ​auto​-setting is selected, the name will be determined using the ​Java Alias​ of
every node above the column in the tree.

2.1.2.3 Change Value Type of Column

If a client applications expects a field to be formatted in a certain way, a TypeMapper can
be used to translate between the database form and the exposed form. It might be that
there is a VARCHAR column in the database with the values “Yes” and “No”, but we want
the values to be sent as either “true” or “false”. This is a typical application for the
TypeMapper feature.

To change mapping used for a particular column, select it in the ​Project Tree​ and select
the type in the ​JDBC Type to Java Type​ dropdown. The following custom mappers exist
in addition to the basic identity mappers:

● String to Local
● True/False to Boolean
● Yes/No to Boolean
● Date to Integer
● Date to Long
● Time to Integer
● Time to Long
● Timestamp to Integer
● Timestamp to Long
● Clob to String
● BigDecimal to Double

Tip​: ​Representing various time units as Long or even Integer will reduce memory usage
and increase performance. Mapping to Integer will produce a time representation in
seconds which is very convenient to use on the front end.

32

Tip:​ Advanced users can write their own mappings and plug them into the graphical tool.
More information about how to do this can be found in the ​Ext Speeder Advanced
Manual​.

2.1.2.4 Define Virtual Columns

A good practise when designing a database is to keep tables “normalized”, which means
that tables should be small and concrete only covering a small concern per table. This is
good for database design, but it is not necessarily what is expected in the client when
sending a REST request. To bridge the gap between a normalized database and a
denormalized client, there are something in Ext Speeder called ​Virtual Columns​. A
Virtual Column will look just like a normal column in the REST API, but in reality it is
retrieved from another table in the background. Virtual Columns use foreign keys in the
database to find information in other tables, but the retrieval is optimized using an
in-memory cache on the server.

To create a virtual column in a particular table, Right-click on the Table node in the
Project Tree​ and select ​Add Virtual Column​.

A name will be assigned to the new column, but it is recommended to set a real name to
whatever it shall be called in the API. Unlike ordinary columns, there is no ​Database
Name​ for a virtual column since it does not really exist in the database. When the virtual
column is created, it is possible to set which table and column it should virtualize. The
items that are available in the dropdown-list are tables and columns that can be reached
using one or several existing foreign keys. Make sure to pick a name that is unique
amongst the table’s columns (i.e. a virtual column cannot have the same name as an
existing column or another virtual column).

33

Example of a Virtual Column named “salesperson_country” that is using foreign keys
from the “sale” table, via the “salesperson” and “office” tables to the “country” table
where the column “name” is used. Thus, the Virtual Column will contain the name of the
country where the office of the salesperson is located for the specific sale.

34

3 The Java API
Even if a lot of configuration can be done using the graphical tool, it is also possible to do
changes in the generated code. This chapter in the manual is dedicated to those users
that want to write some custom logic using the powerful features of the Ext Speeder
server-side API. If no custom logic is needed, please skip directly to to ​Chapter 4​ for
instructions on taking the application into production.

3.1 Navigating the Generated Code
The Ext Speeder class structure is quite straightforward. Source files are by default
located in the ​src/main/java/​ folder and configuration files in the ​src/main/json/
folder. The java sources are organized in packages named after the database structure.

The main entry point of the application is located directly in the folder named after the
company and project name. The name of the file is ​Main.java​.

src/main/java/com/company/myapp/Main.java

The main() method in the Main class just creates a helper class
StandaloneMainSupport​ class and invokes its run() method. It is possible to override a
number of methods in the ​StandaloneMainSupport​ class, for example the username()
and password() methods. The generated logic for setting up the server and binding the
various REST commands are located in ​StandaloneMainSupport​’s superclass located at:

src/main/java/com/company/myapp/generated/​GeneratedStandaloneMainSup
port​.java

Below the directory of this class are the folders for the schemas and tables. For every
table, a number of files will be created. A table file looks something like this:

src/main/java/com/company/myapp/db0/myapp/user/User.java

3.1.1 Entities and Managers
Every table in the database will result in a number of source files. Assuming that there is
a table in the database called “user”, then the following files will be created.

1..../user/User.java

2..../user/UserImpl.java

3..../user/UserManager.java

4..../user/UserManagerImpl.java

35

5..../user/UserServlet.java

6..../user/generated/GeneratedUser.java

7..../user/generated/GeneratedUserImpl.java

8..../user/generated/GeneratedUserManager.java

9..../user/generated/GeneratedUserManagerImpl.java

10. .../user/generated/GeneratedUserServlet.java

The first package (1-4) is only generated once and contains a number of marker classes
and interfaces. These are almost empty and will not be replaced if the code is
regenerated. That means that custom code can be written in these files without the risk
of the changes being overwritten. The second package called “generated” (5 - 8) is where
the default implementation of these components are located. These files will be
overwritten each time the code generator is called, so it is not advised to change them.

Here is a more detailed description of the purpose of each file:

1. .../user/User.java
The interface of the user entity that will be exposed throughout the code. If new
methods for a “user” entity needs to be exposed, this is where they go. User
extends the ​GeneratedUser​ interface in the .../user/​generated/​ folder.

2. .../user/UserImpl.java
The implementing class of the ​User​ interface. This class extends the
GeneratedUserImpl​ class. If the implementation of a certain generated entity
method needs to be changed, it can be overridden in this class.

3. .../user/UserManager.java
The interface of the manager that handles operations on the User table. From this
class, it is possible get a stream of users, persist entities to the database and so
on. This extends the ​GeneratedUserManager​ interface. If new methods for a
“user” manager needs to be exposed, this is where they go.

4. .../user/UserManagerImpl.java
The implementing class of the manager interface. This extends the
GeneratedUserManagerImpl ​class in the generated package. If the
implementation of a certain generated manager method needs to be changed, it
can be overridden here.

5. .../user/UserServlet.java

This Servlet is used to serve HTTP requests from end users. It is used regardless if
the application is run stand-alone or in a JavaEE server..

6. .../user/generated/GeneratedUser.java
This interface is where all the generated methods for the user table is declared. It
also contains fields for referencing the different user columns. More about this
later on.

36

7. .../user/generated/GeneratedUserImpl.java

This abstract class is where the standard implementation of the ​GeneratedUser
interface is located. It is overridden by the ​UserImpl​ class.

8. .../user/generated/GeneratedUserManager.java
The base interface of the manager.

9. /user/generated/GeneratedUserManagerImpl.java
The abstract base implementation of the ​GeneratedUserManager​ interface. This
is overridden by the ​UserManagerImpl​ class.

10. /user/generated/GeneratedUserServlet.java
The abstract base implementation of the ​UserServlet​ servlet. This is overridden
by the ​GeneratedUserServlet​ class.

3.2 Common Stream Operations
The Ext Speeder instance is built on top of the ​Stream​ interface introduced in Java 8. A
stream is a pipeline of different actions that is put in front of a data source. When
requesting an item from the pipeline, every action passes the request up the stream,
applying it on the way down. Some operations can also be short-circuited since the
structure of the whole pipeline is known before it is being executed. For example, just
counting all items in a stream means that any sorting can be removed, since sorting does
not influence the number of elements in the stream, it just modifies the order of the
elements.

A stream from a particular table is obtained via its manager as shown hereunder:

final Stream<User> stream = users.stream();

Once a stream has been obtained, it is possible to add intermediate operations to it, until
it is terminated. Thus, no elements will be retrieved until the stream is terminated. There
is a number of different terminating operations available. The one used in the example
simply executes the specified function once for each element in the stream, without
guaranteeing any specific order.

users.stream().forEach(user ­> {/* do something cool */});

The most common terminating operations are listed in the table below:

Terminating Operation Function

37

.forEach(consumer) Calls the specified consumer once for every entity
without guaranteeing the order.

.forEachOrdered(consumer) Calls the specified consumer once for every entity in
order of appearance in the stream.

.collect(collector) Collects the entities into a list, map, set, string or
something completely else using a Collector.

.count() Returns the number of elements in the stream.

.findAny() Returns any single element from the stream. If there
are several elements in the stream, any of them may
be selected. If there are no elements in the stream,
Optional.empty() is returned.

.findFirst() Returns the first element in an ordered stream. If
there are no elements in the stream,
Optional.empty() is returned.

Simply iterating over an entire table is seldom useful. Instead, the usual way to go is to
first filter out certain elements of interest. The standard way of doing this in Java 8 is to
add one or several predicates using the ​filter()​-method. A predicate is a function that
takes some kind of element object and returns a ​boolean​. If the returned boolean is
true, the element “survives” the filter and propagates downstream. If the returned
boolean​ is false, the element is dropped from the stream.

users​.​stream​()
 ​.​filter​(​user ​­>​ user​.​getId​()​ ​<​ ​1000)
 ​.​forEach​(​user ​­>​ ​{​/* do something cool */​});

For performance reasons, Ext Speeder generates a number of optimized predicates that
should be used​. These will utilize the in-memory storage structures to reduce the
complexity of the search.

users​.​stream​()
 ​.​filter​(​User​.​ID​.​lessThan​(​1000​))
 ​.​filter​(​User​.​NAME​.​equalIgnoreCase​(​"Lisa"​))
 ​.​forEach​(​user ​­>​ ​{​/* do something cool */​});

3.3 Formatting JSON Output
Often when writing REST applications, not every column needs to be included in the JSON
output. In the User example used previously, we might have hashed passwords and
other sensitive user information in the database that we don't want to expose. In the
graphical tool, this is exclusions can be done automatically. This chapter provides a guide
as to how Ext Speeder performs JSON formatting and how to modify the formatting.

38

3.3.1 Modifying the JSON Output
Entities are converted to JSON using the corresponding servlet method ​toJson()​. If the
JSON format needs to be changed programmatically, override this method in the main
Servlet class. For example, if there is a “user” table, then override the ​toJson(User
entity)​ method in the ​UserServlet​ class.

39

4 Deploying a Server Application
This chapter contains some guidelines on how to deploy the Ext Speeder application. An
Ext Speeder application can be deployed in two ways:

1) Stand-alone. The application is started using its Main class.
2) In a JavaEE server like Tomcat. The application is deployed as a WAR file on the

JavaEE server

4.1 Deploying Stand Alone
When deploying the application on a server that does not have an IDE or Maven
installed, all the external JAR dependencies (e.g. the database driver) must be provided to
the application upon start.

There is a convenient Maven plugin that can automatically pack the application together
with all its dependencies in a composite “Über JAR”. This JAR is a self-contained unit that
can easily be deployed in a single step.

Read more on ​https://maven.apache.org/plugins/maven-shade-plugin/

4.2 Deploying in A JavaEE Server
To be able to deploy the application in a JavaEE Server, the ​pom.xml​ file first needs to be
updated so that the element ​<packing>jar</packing>​ is changed to
<packing>war</packing>​ instead. When the pom.xml file has been changed, rebuild
your project and a war file will be created. This war file contains everything needed to be
deployed in a JavaEE server.

Some of the files that are being generated will control how you application will be
deployed. Make sure to review the file web.xml to understand how you server resources
are mapped.

When the application is deployed, there is a start page located at the deployment path
named ​index.jsp​. Access this page and enter the credentials for database access and
press the button “Initialize Ext Speeder”. The Ext Speeder application cannot serve
requests unless it has been initialized properly.

There is also a shutdown servlet that will clean up all resources used by Ext Speeder. The
servlet is located at the deployment path and is named “shutdown”. Make sure you
shutdown Ext Speeder before you undeploy you Ext Speeder application.

40

https://maven.apache.org/plugins/maven-shade-plugin/

4.3 Setting JVM parameters
Since Ext Speeder stores all the selected data in-memory, the JVM/JavaEE server must
reserve sufficient memory upon application start. The default memory size is usually 2
GByte. If the application runs out of memory, increase the available memory space
allocation. For example, by providing the following command line parameters:

java ­Xms8G ­Xmx8G ­jar MyApp.jar

This will allocate 8 GByte of memory to the JVM.

41

5 Requirements and Performance

5.1 Database types
Ext Speeder supports the following database versions:

Database type Version JDBC version

Oracle 12.1 ojdbc7, 12.1.0.1.0

MySQL 5.7.9 5.1.38

PostgreSQL 9.4.5 9.4-1206-jdbc4

MariaDB 10.1 1.4.0

The oracle database JDBC driver must be downloaded and installed manually.

5.2 JVM types
Ext Speeder supports the following JVMs:

Jvm type Version Revision

Oracle JDK 8 >=40

Open JDK 8 >=40

5.3 JavaEE Servers
Ext Speeder supports the following JavaEE servers:

JavaEE server Version Comment

Tomcat 8.0.27 Java EE 7, Servlet 3.1

Glassfish 4.1.1 Java EE 7, Servlet 3.1

If you use Glassfish, you need to setup database access through “Driver” access. Ext
Speeder might work with any JavaEE server that supports Servlet 3.1.

42

5.4 Data Sizes
Ext Speeder handles the following data sizes:

Restriction Amount Comment

Elements total per JVM 100,000,000 Elements = ​Σ ​rows*columns

Rows per table 25,000,000

Columns per table 300

These are the maximum supported data sizes. Ext Speeder might however continue to
work with larger data sets, but potentially with reduced performance.

The number of elements are simply the number of rows times the number of columns,
for every selected table.

5.5 Primary Key Requirement
Because Ext Speeder keeps an in-memory representation of all rows, the rows must be
uniquely identifiable. This is made using the primary key. Ext Speeder handles one
primary key. This means that all tables that Ext Speeder is handling, must have exactly
one primary key per table.

If a primary key is not available or if there are several primary keys defined for a table,
the developer can, via the JSON configuration file, set any column to a virtual primary
key. This will then work as an auxiliary primary key column, provided that the column
has unique non-null values throughout the table.

5.6 Static data
Upon application start, Ext Speeder will read the entire database into memory and order
the content in its internal format. In order to refresh the in-memory data set, the
application has to be restarted.

5.7 Performance
Ext Speeder is designed with performance in mind. Even if the amount of data is
increased by say 200%, the latency for queries will only increase marginally (by perhaps
only 10%).

43

Unique columns will give better performance than non-unique columns.

Ext Speeder is designed to be massively parallel and with low coupling between threads.
This means that the more CPU cores available to the application, the more capacity the
application will have (i.e. increasing the number of CPU cores from four to eight means
that the application can serve almost twice as many request per second).

The startup time for a Ext Speeder application depends on several factors but is
approximately proportional to the amount of data loaded.

5.8 Benchmarks
For applications with tens of million elements, Ext Speeder can typically serve thousands
of queries per second and with latencies typically in milliseconds.

5.9 Query Planning
When an Ext Speeder REST request is received, the query is analysed and optimized to
give the best predictable performance possible. There are four basic components in a
query:

● Filter - Which rows to include in a query
● Sort - The order of rows
● Skip - How many initial rows shall be skipped before rows are outputted
● Limit - How many of the filtered, sorted and non-skipped rows to include

Due to memory efficiency constraints, Ext Speeder cannot predict all possible
combinations of the four basic components at runtime. Keep the queries as simple as
possible for best performance and try to avoid filters in performance sensitive
applications (filters are the hardest to predict). Limit does not contribute to query
complexity and should be used whenever possible.

44

Appendix A
List of optimized predicates:

Operator JSON Comment

Equals eq Optimized

Not equals ne Optimized

Less than lt Optimized

Less or equal le Optimized

Greater than gt Optimized

Greater or equals ge Optimized

Contains like O(n) behavior

N.B. The operators 'in', 'notin' and 'regexp’ are not supported.

45

